Matrix Converter Using Direct Svm Method with Input Power Factor Compensation
نویسنده
چکیده
The matrix converter (MC) for motor drive applications and energy conversion systems is steadily increasing due to its main advantage of performing a direct coupling between two three-phase alternating current sources without the need of an intermediate direct current bus. The input filters characteristics design for matrix converter system: to reduce the high harmonic components at the main power supply current and to improve the input voltage distortion for matrix converter, the unity power factor at the main power supply side is only achieved at the high output load and decreases greatly at the light load conditions. This paper proposes a new direct space vector modulation (DSVM) method to achieve the required displacement angle between input voltage and input current of matrix converter. A new switching strategy is introduced based on the maximum compensated angle and for the controllable input power factor of matrix converter. The power factor compensation algorithms using the new DSVM method to achieve the maximum IPF are presented, in which compensation algorithm I is based on using the input filter and power supply parameters to estimate the optimal compensated angle. Compensation algorithm II is subsequently proposed using a proportional–integral controller to overcome drawbacks presented in compensation algorithm I. Simulation results with inductive load (RL) are shown to validate the effectiveness of the proposed method.
منابع مشابه
کنترل مستقیم گشتاور و ضریب توان یک موتور القایی با خطی سازی ورودی-خروجی با استفاده از مبدل ماتریسی
Direct torque control (DTC) is a fast and simple torque control method for induction motor without speed sensor. Conventional AC-DC-AC converter has a large DC link capacitor and low power factor in the input power line. In the matrix converters the DC link capacitor can be reduced and the unity input power factor can be obtained. In this paper a new method for direct torque and stator flux con...
متن کاملکاهش ولتاژ وجه مشترک در مبدل ماتریسی با حذف بردار صفر
Matrix Converter (MC) is a direct energy conversion device with high input power factor. In the Direct Matrix Converter modulation, the Space Vector Modulation (SVM) method by simultaneous control of the input current and output voltage is used. In this method sum of the phase voltages in the central point of load is nonzero, then nonzero Common-Mode Voltage (CMV) in central point is produce...
متن کاملA New DPC-SVM for Matrix Converter Used in Wind Energy Conversion System Based on Multiphase Permanent Magnet Synchronous Generator
This paper proposes a novel wind energy conversion system based on a Five-phase Permanent Magnetic Synchronous Generator (5-PMSG) and a Five to three Matrix Converter (5-3MC). The low cost and volume and also eliminating grid side converter controller are attractive aspects of the proposed topology compared to the conventional with back-to-back converters. The control of active and reactive pow...
متن کاملActive and Reactive Power Management of Wind Farm Based on a Six Leg Tow Stage Matrix Converter Controlled by a Predictive Direct Power Controller
In this paper we propose a new configuration of the wind farm connecting with an electrical grid. The proposed Wind Energy Conversion System (WECS) is based on a two stages six-leg matrix converter using to drive a two Doubly Fed Induction Machines operating at different wind speeds. Each Doubly Fed Induction Generator (DFIG) is controlled through the rotor currents using the Finite Set Model P...
متن کاملDesign and Simulation of a New DC Power Supply Based on Dual Bridge Matrix Converter
A conventional high power DC power supply systems consist of a three-phase diode rectifier followed by a high frequency converter to supply loads at regulated DC voltage. These rectifiers draw significant harmonic currents from the utility, resulting in poor input power factor. In this paper, a DC power supply based on dual-bridge matrix converter (DBMC) with reduced number of switches is p...
متن کامل